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Abstract— To navigate safely and efficiently in crowded
spaces, robots should not only perceive the current state of the
environment but also anticipate future human movements. In
this paper, we propose a reinforcement learning architecture,
namely Falcon, to tackle socially-aware navigation by explic-
itly predicting human trajectories and penalizing actions that
block future human paths. To facilitate realistic evaluation,
we introduce a novel SocialNav benchmark containing two
new datasets, Social-HM3D and Social-MP3D. This benchmark
offers large-scale photo-realistic indoor scenes populated with
a reasonable amount of human agents based on scene area
size, incorporating natural human movements and trajectory
patterns. We conduct a detailed experimental analysis with the
state-of-the-art learning-based method and two classic rule-
based path-planning algorithms on the new benchmark. The
results demonstrate the importance of future prediction and
our method achieves the best task success rate of 55% while
maintaining about 90% personal space compliance. We have
already released our code and datasets.

I. INTRODUCTION

Social navigation (SocialNav) refers to autonomous robots
adhering to social norms and social etiquette while navi-
gating human-shared environments [1]. This task challenges
traditional visual navigation methods, particularly in human-
populated settings where collision avoidance is critical.

Existing RL-based approaches [2], [3], [4] often struggle
due to limited foresight and reliance on global informa-
tion [5], [6], [7]. For instance, consider Fig. 1, where a robot
navigates toward a goal intersecting two humans’ future
paths. Traditional methods may fail due to limited foresight
or over-reliance on global data. In contrast, our approach
predicts human trajectories explicitly, enabling social com-
pliance and long-term collision avoidance.

Human trajectory forecasting improves navigation in dy-
namic environments [8], [9], [10], but it is primarily applied
in outdoor scenarios like autonomous driving [11], [12],
[13]. Motivated by this, we integrate trajectory prediction
into SocialNav, addressing indoor challenges such as limited
space and maneuverability [7].

To address these challenges, we propose Falcon, a future-
aware SocialNav framework with precognition. Falcon’s key
novelties include: 1) the Social Cognition Penalty, which
penalizes trajectory obstructions, promoting proactive colli-
sion avoidance; and 2) the Spatial-Temporal Precognition
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Fig. 1: We integrate trajectory prediction into the SocialNav task.
In (a), the robot navigates toward a goal while predicting human
trajectories (dashed lines) and avoiding them. The robot uses depth
input as shown in (b). (c) offers a top-down map for reference.

Module, incorporating socially-aware auxiliary tasks like tra-
jectory prediction to enhance future dynamics understanding
during training.

Another challenge in SocialNav is unrealistic configura-
tions [14]. Current methods oversimplify environments, ne-
glecting scene complexity [15], [16], [17], and assume access
to global information [18]. To address this, we introduce
a novel SocialNav benchmark with two datasets, Social-
HM3D and Social-MP3D. Built using 3D-reconstructed
real-world indoor scenes, these datasets feature realistic
human movements and robot animations. The robot uses only
egocentric inputs and a point goal during inference, without
relying on global maps or known trajectories. Our benchmark
provides a more realistic representation of SocialNav. Falcon
achieves state-of-the-art performance on this benchmark,
with a 55% success rate and high social compliance.

Overall, our main contributions are as follows:

• We introduce the first realistic SocialNav benchmark
with two novel datasets, Social-HM3D and Social-
MP3D, featuring large-scale photo-realistic scenes with
realistic human and robot animations.

• We propose a new and effective SocialNav framework,
Falcon, that integrates explicit trajectory prediction,
allowing the robot to perceive and predict for safe,
socially comfortable and effective navigation.

• We establish a new state-of-the-art result compared to
prior approaches on the proposed benchmark.



Fig. 2: Falcon Overview: The main policy network (top-right) takes Depth and GPS+Compass data as input. Its behavior is guided by
the Social Cognition Penalty, which encourages socially compliant navigation and generates the main loss. During training, the output
of the network’s state encoder, combined with auxiliary information from the Habitat simulator, is processed by the Spatial-Temporal
Precognition Module (bottom-right). Three socially-aware auxiliary tasks are then performed, producing auxiliary losses. The total loss
is computed by weighting the main loss with the auxiliary losses.

II. RELATED WORKS

A. Social Navigation.

In this paper, we focus on the SocialNav task [7], [14], in-
troduced in the iGibson SocialNav Challenge [19]. This task
extends PointGoal Navigation (PointNav) by adding moving
humans, though the humans in the challenge have unrealistic
movements. Our work uses the Habitat 3.0 simulator [20]
to introduce realistic human movements and animations.
SocialNav has been widely studied in robotics, computer
vision, and social behavior analysis [21], [22]. Research
in collision-free multi-agent navigation [23], [24], [25] and
dynamic environments [26] has addressed challenges posed
by human presence [27], [28], [29], [30], [31]. Our method
introduces explicit trajectory prediction within auxiliary tasks
to train an RL-based agent for SocialNav.

B. Human Trajectory Prediction.

Human trajectory prediction is vital for enabling safe
and intelligent behavior in autonomous systems [32], [33].
Traditional approaches rely on physical models like the
Social Force model [28], which uses forces to simulate
social behaviors. Methods fall into three categories: physics-
based models [34], [35], [36], learning-based methods [37],
[38], [39], and planning-based methods [40], [41], [42].
Our approach integrates socially-aware information into the
agent’s navigation policy in dynamic scenes.

III. METHODOLOGY

A. Problem Formulation

We consider a social navigation task where a robot nav-
igates in an environment with N humans. Starting from
an initial configuration, the robot aims to reach a goal

while avoiding collisions with static obstacles and dynamic
humans. The objective is:

τa = argmin
τ∈T

(ca(τ) + λacsa(τ, τ1:N )) (1)

where ca is the path cost, csa accounts for social norms, and
λa is a weight factor.

B. Overview of Falcon

Figure 2 shows the architecture of Falcon. The Main
Policy Network takes depth images and point goals as
inputs, outputs actions using DD-PPO, and is guided by a
Social Cognition Penalty (SCP). During training, the Spatial-
Temporal Precognition Module performs auxiliary tasks to
enhance the agent’s understanding of future dynamics.

C. Main Policy Network

The main policy network consists of a ResNet-50 vi-
sual encoder, an LSTM for temporal features, and actor-
critic heads for action prediction and reward estimation.
The reward function combines PointNav rewards with SCP
penalties:

Rsocialnav = Rpointnav −Rscp (2)

where Rscp includes penalties for obstacle collisions, human
proximity, and trajectory obstructions.

D. Spatial-Temporal Precognition Module

This module performs three socially-aware auxiliary tasks:
Human Count Estimation. Predicts the number of hu-

mans using a classifier:

Lcount = −
M∑
k=0

nk log(n̂k) (3)



Dataset
Num.

Scenes
Scene
Type

Max Num.
Humans

Natural
Motions

iGibson-SN [43] 15 residence 3 ✗

Isaac Sim [44] 7
residence, office,

depot, etc.
7 ✓

HabiCrowd [45] 480
residence, office,

gym, etc.
40 ✗

HM3D-S [18] 900
residence, office,

shop, etc.
3 ✗

Social-HM3D 844
residence, office,

shop, etc.
6 ✓

Social-MP3D 72
residence, office,

gym, etc.
6 ✓

TABLE I: Statistics Comparison of SocialNav Datasets/Simulators:
Our proposed Social-HM3D and Social-MP3D datasets feature
extensive scene diversity and realistic interaction design, addressing
the shortcomings of previous datasets which often relied on over-
simplified human behaviors and imbalanced interaction dynamics.

where nk is the true count and n̂k is the predicted probability.
Current Position Tracking. Tracks human positions rel-

ative to the robot using regression:

Lpos =
1

|M |
∑
i∈M

∥P̂ t
i − P t

i ∥2 (4)

where P̂ t
i is the predicted position and P t

i is the true position.
Future Trajectory Forecasting. Predicts human trajecto-

ries over multiple time steps:

Ltraj =
1

|M |
∑
i∈M

∥P̂ t+1:t+H
i − P t+1:t+H

i ∥2 (5)

where P̂ t+1:t+H
i is the predicted trajectory and P t+1:t+H

i is
the ground truth.

The total loss is computed as:

Ltotal = βmainLmain + βauxLaux (6)

where Laux = Lcount + Lpos + Ltraj .

IV. EXPERIMENTS
A. Datasets

Existing SocialNav datasets[43], [44] often lack scene
diversity or realistic human behaviors. Others [45], [18],
while rich in scenes, fail to balance human density or provide
natural movement. To address these limitations, we introduce
a benchmark with two simulation datasets: Social-HM3D
and Social-MP3D, derived from HM3D[46] and MP3D [47].

Table I compares our datasets with existing ones. Our
datasets feature diverse environments, realistic human mo-
tions, and balanced interaction dynamics, enabling more
effective social navigation algorithm development.
Realistic Human Behaviors. Our dataset provides goal-
driven human trajectories with natural movement patterns,
unlike random walks or repetitive movements [43], [45].
Each human alternates between moving towards two goals
and resting, stopping once tasks are complete. Their walking
speeds vary between 0.8–1.2 times the robot’s speed. Colli-
sions are avoided using ORCA [23], and realistic animations
enhance visual authenticity.
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Fig. 3: Human Distribution by Scene Area in Social-HM3D and
Social-MP3D (Train/Test): Balanced social density for human-robot
interactions.

Reasonable Human Density. Humans are grouped by scene
area size to balance interaction density. Fig. 3 shows the
distribution of human numbers, ensuring meaningful inter-
actions without overcrowding.
Diversity and Scalability. Our datasets include 844 scenes
from Social-HM3D and 72 scenes from Social-MP3D, sup-
porting diverse tasks such as SocialNav and social ob-
ject/image navigation.

B. Experiment Setup

Metrics. Our benchmark metrics focus on task completion
and adherence to SocialNav objectives. For task completion,
we use Success Rate (Suc.), Success weighted by Path
Length (SPL), and Success weighted by Time Length (STL).
For social norms, we evaluate Human-Robot Collision Rate
(H-coll) and Personal Space Compliance (PSC). Considering
the human collision radius (0.3m) and robot size (0.25m), the
PSC distance threshold is set to 1.0m.

Baseline Models. We include two classic rule-based meth-
ods: A* [48] and ORCA [23]. We compare Falcon with
Proximity-Aware [18], both are RL-based, and above all
methods use depth images as inputs for fair comparison.

Implementation Details. RL agents are trained using DD-
PPO [49] with identical hyperparameters. Each algorithm is
run three times with different seeds, and results are reported
as mean ± standard deviation. Our model is initialized with
PointNav weights [46] and fine-tuned for 10 million steps
on SocialNav. Training uses 4 Nvidia RTX 3090 GPUs
with 8 parallel environments. Models are trained on Social-
HM3D and tested on both Social-HM3D and Social-MP3D
to evaluate zero-shot generalization.

C. Result Analysis

We conduct experiments to investigate several key aspects:
• Effectiveness of our algorithm against prior methods.
• Impacts of our auxiliary tasks.
• Individual and cooperative effects of the Social Cogni-

tion Penalty (SCP) and Spatial-Temporal Precognition
Module (SPM).

Table II shows results on Social-HM3D and zero-shot
Social-MP3D tests. Falcon excels in goal-reaching and so-
cial compliance, with strong generalization to unseen envi-



Dataset Method Suc. ↑ SPL ↑ STL ↑ PSC ↑ H-Coll ↓

Social-HM3D
Rule-Based A∗ [48] 46.14±0.7 46.14±0.7 46.12±0.7 90.56±0.2 53.50±0.9

ORCA [23] 38.91±0.1 38.91±0.1 38.44±0.1 90.55±0.4 47.52±1.7

RL Proximity-Aware [18] 20.11±1.3 18.57±1.9 19.51±1.5 92.91±0.5 33.99±0.7

Falcon 55.15±0.6 55.15±0.7 54.94±0.7 89.56±1.4 42.96±1.1

Social-MP3D
Rule-Based A∗ [48] 43.85±0.3 43.85±0.3 43.85±0.3 86.74±3.4 57.94±1.5

ORCA [23] 40.38±0.3 40.38±0.3 39.51±0.2 91.76±0.4 47.16±0.2

RL Proximity-Aware [18] 18.45±1.4 17.09±2.8 16.41±1.5 93.37±0.9 32.18±3.3

Falcon 55.05±0.7 55.04±0.6 54.80±1.0 90.01±1.2 42.19±0.9

TABLE II: Performance Evaluation of SocialNav Tasks for Rule-Based and RL-Based Methods on Social-HM3D (upper group) and
Social-MP3D (lower group). Data in the table represents percentages. We bold the best results and underline the second best results.

(a) Person Following: A* causes collisions, while our method succeeds.

(b) Intersection Encounter: ORCA hits wall, while ours avoids safely.

(c) Frontal Approach: The Proximity-Aware method collides when crossing
in front directly, while our method avoids safely by anticipating human path.

Fig. 4: Comparisons of SocialNav Algorithms in Different En-
counters: Our method outperforms other algorithms across various
encounters. Green indicates safe behaviors, orange indicates risky
behaviors (e.g., proximity to humans or collisions with obstacles),
and red indicates unsafe behaviors (i.e., collisions with humans).

ronments. Fig. 4 illustrates qualitative comparisons where
Falcon outperforms others.
Finding 1: Future-aware methods outperform static and
situation-aware approaches. Static algorithms like A* fail
in dynamic environments (Fig. 4(a)). Situation-aware meth-
ods like ORCA and Proximity-Aware react to current states
but struggle with delayed responses and collisions (Fig. 4(b),
Fig. 4(c)). Falcon proactively adjusts to human movements,
achieving better performance.
Finding 2: Auxiliary tasks improve performance, with
trajectory prediction being most impactful. Table III
shows that trajectory forecasting (SPM.Traj) boosts success
rates from 40.94% to 54.00%, highlighting its importance.

SPM.
Count

SPM.
Pos

SPM.
Traj

SCP Suc. ↑ SPL ↑ STL ↑ PSC ↑ H-Coll ↓

PointNav (w/o Aux. Task) 40.94 34.14 11.50 90.82 53.54

✓ 51.43 51.42 51.16 90.53 46.46
✓ 53.17 53.17 52.95 90.06 44.07

✓ 54.00 53.99 53.92 89.46 43.88
✓ 51.24 51.24 51.08 90.41 48.11

✓ ✓ ✓ 53.63 53.63 53.40 89.33 44.89
✓ ✓ ✓ ✓ 55.15 55.15 54.94 89.56 42.96

TABLE III: Ablation Study for Falcon. The model trained
solely with the PointNav algorithm [46] serves as the baseline.
SPM.Count, SPM.Pos, and SPM.Traj refer to three auxiliary tasks:
Humanoid Count Estimation, Current Position Tracking, and Future
Trajectory Forecasting. Data in the table are percentages.

Finding 3: SCP enhances SPM integration, improving
performance and training speed. As shown in Table III,
SCP significantly improves SPM’s performance (55.15% vs.
53.63%).

V. CONCLUSIONS

We introduce a novel SocialNav benchmark with two
datasets, Social-HM3D and Social-MP3D, and propose Fal-
con, a future-aware method for social navigation in realistic
human-populated scenes. By integrating trajectory prediction
into navigation policy, Falcon demonstrates superior success
rates and collision avoidance. We believe this work will
advance research and applications in social navigation.
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survey on human-aware robot navigation,” Robotics and Autonomous
Systems, vol. 145, p. 103837, 2021.

[23] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics Research: The 14th Interna-
tional Symposium ISRR. Springer, 2011, pp. 3–19.

[24] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” 2008.

[25] P. Long, W. Liu, and J. Pan, “Deep-learned collision avoidance policy
for distributed multiagent navigation,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 656–663, 2017.

[26] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How,
“Probabilistically safe motion planning to avoid dynamic obstacles
with uncertain motion patterns,” Autonomous Robots, vol. 35, no. 1,
pp. 51–76, 2013.

[27] J. Guzzi, A. Giusti, L. M. Gambardella, G. Theraulaz, and G. A.
Di Caro, “Human-friendly robot navigation in dynamic environments,”
in IEEE international conference on robotics and automation. IEEE,
2013, pp. 423–430.

[28] G. Ferrer, A. Garrell, and A. Sanfeliu, “Social-aware robot navigation
in urban environments,” in Proc. of thr European Conference on
Mobile Robots, 2013.

[29] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” 2017.

[30] Y. Lu, X. Ruan, and J. Huang, “Deep reinforcement learning based
on social spatial–temporal graph convolution network for crowd nav-
igation,” Machines, vol. 10, no. 8, p. 703, 2022.

[31] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” 2019.

[32] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila,
and K. O. Arras, “Human motion trajectory prediction: A survey,”
The International Journal of Robotics Research, vol. 39, no. 8, pp.
895–935, 2020.

[33] R. Huang, H. Xue, M. Pagnucco, F. Salim, and Y. Song, “Multimodal
trajectory prediction: A survey,” arXiv preprint arXiv:2302.10463,
2023.

[34] A. Elnagar, “Prediction of moving objects in dynamic environments
using kalman filters,” in Proceedings 2001 IEEE International Sympo-
sium on Computational Intelligence in Robotics and Automation (Cat.
No. 01EX515). IEEE, 2001, pp. 414–419.

[35] S. Zernetsch, S. Kohnen, M. Goldhammer, K. Doll, and B. Sick, “Tra-
jectory prediction of cyclists using a physical model and an artificial
neural network,” in 2016 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2016, pp. 833–838.

[36] P. Coscia, F. Castaldo, F. A. Palmieri, A. Alahi, S. Savarese, and
L. Ballan, “Long-term path prediction in urban scenarios using circular
distributions,” Image and Vision Computing, vol. 69, pp. 81–91, 2018.

[37] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 961–971.

[38] T. P. Kucner, M. Magnusson, E. Schaffernicht, V. H. Bennetts, and
A. J. Lilienthal, “Enabling flow awareness for mobile robots in
partially observable environments,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 1093–1100, 2017.

[39] A. Vemula, K. Muelling, and J. Oh, “Modeling cooperative navigation
in dense human crowds,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 1685–1692.

[40] D. Vasquez, “Novel planning-based algorithms for human motion
prediction,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 3317–3322.

[41] A. Rudenko, L. Palmieri, and K. O. Arras, “Predictive planning for
a mobile robot in human environments,” in Proc. of the IEEE Int.



Conf. on Robotics and Automation (ICRA), Works. on AI Planning
and Robotics, 2017.

[42] E. Rehder, F. Wirth, M. Lauer, and C. Stiller, “Pedestrian prediction
by planning using deep neural networks,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
5903–5908.

[43] C. Li, J. Jang, F. Xia, R. Martı́n-Martı́n, C. D’Arpino, A. Toshev,
A. Francis, E. Lee, and S. Savarese, “igibson challenge 2021,”
Online, 2021, [Online; accessed: 2024-08-23]. [Online]. Available:
http://svl.stanford.edu/igibson/challenge.html

[44] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

[45] A. D. Vuong, T. T. Nguyen, M. N. VU, B. Huang, D. Nguyen,
H. T. T. Binh, T. Vo, and A. Nguyen, “Habicrowd: A high perfor-
mance simulator for crowd-aware visual navigation,” arXiv preprint
arXiv:2306.11377, 2023.

[46] S. K. Ramakrishnan, A. Gokaslan, E. Wijmans, O. Maksymets,
A. Clegg, J. Turner, E. Undersander, W. Galuba, A. Westbury, A. X.
Chang, et al., “Habitat-matterport 3d dataset (hm3d): 1000 large-scale
3d environments for embodied ai,” arXiv preprint arXiv:2109.08238,
2021.

[47] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, “Matterport3d: Learning from rgb-d
data in indoor environments,” arXiv preprint arXiv:1709.06158, 2017.

[48] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[49] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh,
M. Savva, and D. Batra, “Dd-ppo: Learning near-perfect pointgoal
navigators from 2.5 billion frames,” arXiv preprint arXiv:1911.00357,
2019.

http://svl.stanford.edu/igibson/challenge.html

